
Web Service tutorial

1. Web Service Basic

1.1. What is web service?

Web service is a way of communication that allows interoperability between different applications on

different platforms, for example, a java based application on Windows can communicate with a .Net

based one on Linux. The communication can be done through a set of XML messages over HTTP

protocol.

In simple words, it is a language to communicate between different languages and platforms.

Web services are browsers and operating system independent service, which means, it can run on any

browser without the need of making any changes. Web Services take Web-applications to the Next

Level.

¢ƘŜ ²ƻǊƭŘ ²ƛŘŜ ²Ŝō /ƻƴǎƻǊǘƛǳƳ ό²о/ύ Ƙŀǎ ŘŜŦƛƴŜŘ ǘƘŜ ǿŜō ǎŜǊǾƛŎŜǎΦ !ŎŎƻǊŘƛƴƎ ǘƻ ²о/Σ ά²Ŝō

Services are the message-based design frequently found on the Web and in enterprise software. The

²Ŝō ƻŦ {ŜǊǾƛŎŜǎ ƛǎ ōŀǎŜŘ ƻƴ ǘŜŎƘƴƻƭƻƎƛŜǎ ǎǳŎƘ ŀǎ I¢¢tΣ ·a[Σ {h!tΣ ²{5[Σ {t!wv[Σ ŀƴŘ ƻǘƘŜǊǎΦέ

1.2. Why do we need Web Service?

1.2.1. Re-usability:

Web Services allow the business logic of many different systems to be exposed over the Web. This gives

your applications the freedom to choose the Web Services that they need. Instead of re-writing the

whole logic, we can only include additional application-specific business logic on the client-side. This

allows you to re-use the existing functionality.

1.2.2. Platform Independent:

Web Services typically work outside of private networks. Web Services also let developers use their
preferred programming languages. In addition, thanks to the use of standards-based communications
methods, Web Services are virtually platform-independent.

1.2.3. Loosely Coupled:

Each service exists independently of the other services in an application. Modification in one service is
not affecting other services.

1.2.4. Versatility:

Web services are versatile by design. They can be accessed by humans via a Web-based client interface,
or they can be accessed by other applications and other Web services. A client can even combine data
from multiple Web services.

1.2.5. Deploy ability:

Web Services are deployed over standard Internet technologies. This makes it possible to deploy Web
Services even over the fire wall to servers running on the Internet on the other side of the globe.

1.3. Components of Web services

Three primary technologies have emerged as worldwide standards that make up the core of today's web
services technology. These technologies are discussed in next chapters. They Are SOAP, UDDI and WSDL

2. Simple Object Access Protocol

2.1. What is SOAP?

It is a XML-based protocol for accessing web services.

SOAP is a W3C recommendation for communication between two applications.

SOAP is XML based protocol. It is platform independent and language independent. By using SOAP, you

will be able to interact with other programming language applications.

2.2. Why is SOAP required?

The protocols like DCOM, RPC, and IIOP are limited to a homogenous network. However, distributed

applications comprise of a heterogeneous network components which necessitates the information to

be transferred in common data format across the platforms.

Simple Object Oriented Protocol (SOAP) is an Open Standard protocol and used XMl which has already

been accepted as a standard form of information transfer which makes the usage of SOAP a solution to

the complexity.

2.3. Advantages of SOAP

¶ SOAP is Language and Platform independent, so it can be written in any programming language and

executed in any platform.

¶ SOAP uses HTTP protocol for transport due to which it becomes scalable.

¶ SOAP messages are in very simple XML format which improves readability.

¶ SOAP defines its own security known as WS Security.

2.4. Disadvantages of SOAP

¶ SOAP uses XML format that must be parsed to be read. It defines many standards that must be

followed while developing the SOAP applications. So it is slow and consumes more bandwidth and

resource.

¶ SOAP uses WSDL and doesn't have any other mechanism to discover the service.

2.5. SOAP Structure

A SOAP message is an ordinary XML document containing the following elements:

Envelope: It identifies the XML document as a SOAP message. It is mandatory element.

Header: It contains header information. It is optional element.

Body: It contains call, and response information. It is mandatory element.

Fault: It provides information about errors that occurred while processing the message. It is optional

element.

3. UDDI

The universal description, discovery, and integration (UDDI) is an XML-based registry standard for
describing, publishing, and finding Web services.

3.1. UDDI Overview:

ω ¦55L ƛǎ ŀ ǎǇŜŎƛŦƛŎŀǘƛƻƴ ŦƻǊ ŀ ŘƛǎǘǊƛōǳǘŜŘ ǊŜƎƛǎǘǊȅ ƻŦ ²Ŝō ǎŜǊǾƛŎŜǎΦ
ω ¦55L ƛǎ ǇƭŀǘŦƻǊƳ independent, open framework.
ω ¦55L Ŏŀƴ ŎƻƳƳǳƴƛŎŀǘŜ Ǿƛŀ {h!tΣ /hw.!Σ WŀǾŀ waL tǊƻǘƻŎƻƭΦ
ω ¦55L ǳǎŜǎ ²{5[ǘƻ ŘŜǎŎǊƛōŜ ƛƴǘŜǊŦŀŎŜǎ ǘƻ ǿŜō ǎŜǊǾƛŎŜǎΦ
ω ¦55L ƛǎ ǎŜŜƴ ǿƛǘƘ {h!t ŀƴŘ ²{5[ŀǎ ƻƴŜ ƻŦ ǘƘŜ ǘƘǊŜŜ ŦƻǳƴŘŀǘƛƻƴ ǎǘŀƴŘŀǊŘǎ ƻŦ ǿŜō ǎŜǊǾƛŎŜǎΦ
ω ¦55L ƛǎ ŀƴ ƻǇen industry initiative enabling businesses to discover each other and define how they
interact over the Internet.

UDDI business registration consists of three inter-related components:

1) White pages (address, contact, and other key points of contact)
2) Yellow pages (classification info. based on standard industry taxonomies)
3) Green pages (the technical capabilities and information about services)

3.2. UDDI ς Data Structures

UDDI defines a data structure standard for representing company and service description information.
Below are the 4 primary types of information in UDDI XML schema.

1) businessEntity: a description of the organization that provides the service.
2) businessService: a list of all the Web services offered by the business entity.
3) bindingTemplate: describes the technical aspects of the service being offered.
пύ ǘaƻŘŜƭΥ όάǘŜŎƘƴƛŎŀƭ ƳƻŘŜƭέύƛǎ ŀ ƎŜƴŜǊƛŎ ŜƭŜƳŜƴǘ ǘƘŀǘ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ ǎǘƻǊŜ ǘŜŎƘƴƛŎŀƭ ƛƴŦƻǊƳŀǘƛƻƴ ƻƴ
how to use the service, conditions for use, guarantees, etc.

Example:

<businessEntity businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64"
 operator="www.ibm.com/services/uddi"
 ŀǳǘƘƻǊƛȊŜŘbŀƳŜҐϦлмллллмv{мέҔ
<name xml: lang="en"> Automotive Equipment Manufacturing Inc. </name>
<description xml: lang="en">
 Automotive Equipment, Accessories and Supplies for European firms
</description>
<contacts>
 <contact useType="Sales Contact">
 <description xml: lang="en"> Sales Representative </ description>
 <personName> Manan Shah</personName>
 <email useType="primary"> mananshah_52@yahoo.co.in</email>
 <address useType="http">
 <addressLine> http://www.automedeq.com/sales/ </addressLine>
 </address>
 </contact>
</contacts>
<businessServices>
 <businessService serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">>
 <name> Search the Automotive Equipment Manufacturing parts Registry </name>
 <description lang="en">

 Get to the Automotive Equipment Manufacturing parts Registry
 </description>
 <bindingTemplates>
<bindingTemplatebindingKey="d594a970-3e16-11d5-98bf-002035229c64"
 serviceKey="d5921160-3e16-11d5-98bf-002035229c64" >
 <description lang="en">
 Use your Web Browser to search the parts registry
 </description>
 <accessPoint URLType="http">
 http://www.automeq.com/b2b/actions/search.jsp
 </accessPoint>
 <tModelInstanceDetails>
<tModelInstanceInfo tModelKey="uuid:0e727db0-3e14-11d5-98bf-002035229c64" />
 <tModelInstanceDetails>
</bindingTemplate>
 </bindingTemplates>
 </businessService>
</businessServices>
<identifierBag>
 <!-- DUNS Number identifier System -->
 ғƪŜȅŜŘwŜŦŜǊŜƴŎŜ ƪŜȅbŀƳŜҐϦ5¦b{ bǳƳōŜǊϦ ƪŜȅ±ŀƭǳŜҐϦΧϦ ǘaƻŘŜƭYŜȅҐϦΧϦκҔ
</identifierBag>
<categoryBag>
 <!τNorth American Industry Classification System (NAICS) -->
 <keyedReference
 ƪŜȅbŀƳŜҐϦ!ǳǘƻƳƻǘƛǾŜ ǇŀǊǘǎ ŘƛǎǘǊƛōǳǘƛƻƴϦ ƪŜȅ±ŀƭǳŜҐϦΧϦ ǘaƻŘŜƭYŜȅҐϦΧϦκҔ
</categoryBag>
</businessEntity>

Here,
1) Key attributes locate various data structures
2) A businessService describes a particular service (or family of services)
3) A bindingTemplate describes where and how a service is accessed
4) A tModel describes compliance with a specification (e.g. a WSDL description)

This tModel for the single service described above refers to bindings in a WSDL description:

<tModel tModelKey="uuid:0e727db0-3e14-11d5-98bf-002035229c64" >
 <name> RosettaNet-IN </name>
 ғŘŜǎŎǊƛǇǘƛƻƴ ȄƳƭΥƭŀƴƎҐέŜƴέҔ
 Supports a process for trading partners to request and provide quotes
 </description >
 <overviewDoc>
 ғŘŜǎŎǊƛǇǘƛƻƴ ȄƳƭΥƭŀƴƎҐέŜƴέҔ
 This compressed file contains the specification in a word
 document, the html guidelines document, and the XML schemas.
 </ description>
 <overviewURL>

 http://www.rosettanet.in/rosettanet/Doc/0/
 K96RPDQA97A1311M0304UQ4J39/3A1_RequestQuote.zip
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference keyName=" Trading quote request and provision"
 ƪŜȅ±ŀƭǳŜҐϦ улмлмтлпϦ ǘaƻŘŜƭYŜȅҐϦ ΧΦΦϦκҔ
 </categoryBag>
</tModel>

4. Web Service Description Language (WSDL):

WSDL stands for Web Service Description Language. It is an XML file that describes the technical details

of how to implement a web service, more specifically the URI,port, method names, arguments, and data

types. Since WSDL is XML, it is both human-readable and machine-consumable, which aids in the ability

to call and bind to services dynamically.

4.1. Elements of WSDL:

Description (or Definition in v1.0):

It is the root element of a WSDL file. It usually contains a set of name space declarations which are used

throughout the WSDL file.

Message:

The message element describes the data being exchanged between the Web service providers and

consumers. (You can consider it as an argument to be passed or returned in function or method in a

programming language)

Interface (or portType in v1.0):
The WSDL interface element defines a Web service, the operations that can be performed, and the
messages that are used to perform the operation. Client can only call one operation per request. (You
can consider it as an interface in JAVA)

Operation:
Defines the actions and the way the message is encoded. (You can consider it as a method or function
calls in a traditional programming language)

Binding:
The WSDL binding element describes how your web service is bound to a protocol. In other words, how
your web service is accessible.

Service:
It contains a set of system functions that have been exposed to the Web-based protocols.

Endpoint (or Port in v1.0):
The endpoint element describes the address of the web service. It is typically represented by a simple
HTTP URL string.

Types:
The WSDL Types describes the data types used by your web service. Data types are usually specified by
XML schema. It can be described in any language as long as your web services API supports it.

4.2. WSDL Example:

<definitions

 name="MyJavaClass1WS"

 targetNamespace="http://mypackage/JavaClass1.wsdl"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://mypackage/JavaClass1.wsdl"

 xmlns:ns1="http://mypackage/IMyJavaClass1WS.xsd">

 <types>

 <schema

 targetNamespace="http://mypackage/IMyJavaClass1WS.xsd"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"/>

 </types>

 <message name="getDate0Request"/>

 <message name="getDate0Response">

 <part name="return" type="xsd:string"/>

 </message>

 <portType name="JavaClass1PortType">

 <operation name="getDate">

 <input name="getDate0Request" message="tns:getDate0Request"/>

 <output name="getDate0Response" message="tns:getDate0Response"/>

 </operation>

 </portType>

 <binding name="JavaClass1Binding" type="tns:JavaClass1PortType">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="getDate">

 <soap:operation soapAction="" style="rpc"/>

 <input name="getDate0Request">

 <soap:body use="encoded" namespace="MyJavaClass1WS"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output name="getDate0Response">

 <soap:body use="encoded" namespace="MyJavaClass1WS"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 </operation>

 </binding>

 <service name="MyJavaClass1WS">

 <port name="JavaClass1Port" binding="tns:JavaClass1Binding">

 <soap:address location="http://UKP16211:8888/Application1-Project-context-

root/MyJavaClass1WS"/>

 </port>

 </service>

</definitions>

5. Web Service Implementation Types

Depending upon the implementation types of a web service, there are majorly two types: RESTful Web
Services and SOAP Web service. We will cover both the types in this chapter.

5.1. RESTful Web Service:

5.1.1. Overview:

¶ REST stands for Representational State Transfer.

¶ REST concept was founded by Roy Fielding.

¶ REST is neither a standard nor a protocol.

¶ It is just an architectural style like client-server architecture.

¶ REST-style architecture follows this concept and consists of clients and servers.

¶ Web Service based on this architecture is called as RESTful Web Service.

¶ RESTful web services are based on HTTP protocol and its methods mainly PUT, GET, POST and
DELETE.

¶ RESTful web services use existing well-known standards (HTTP, XML, URI, MIME).

5.1.2. How does RESTful Web Service Works? :

[ŜǘΩǎ ǎŀȅ ǿŜ ƘŀǾŜ ŎƭƛŜƴǘ ŀƴŘ ǎŜǊǾŜǊ ǿƛǘƘ ŘŜǇƭƻȅŜŘ w9{¢Ŧǳƭ ²Ŝō {ŜǊǾƛŎŜ on server (as shown in picture).
Now, REST guidelines says that data and functionality which client can access on server is called as
resource and each resource should be accessed using its URI by all its client, which is very much similar
ǘƻ ƛƴǘŜǊƴŜǘ ǿƘŜǊŜ ǿŜ ŀŎŎŜǎǎ ŀ ǇŀǊǘƛŎǳƭŀǊ ǿŜōǎƛǘŜ ōȅ ǘȅǇƛƴƎ ƛǘΩǎ ¦w[.

Whenever we type a URL in browser a request is being sent to a server for a response. Once we get a
response from a server a page is being depicted. Similarly in REST, when a client sends a request to
server using URI, server will give a response which is a representation of a resource.

This response can be represented in HTML, XML, PDF, Plain Text, JSON etc.

5.1.3. Advantages of RESTful Web Service:

¶ Lightweight - not a lot of extra xml markup

¶ Human Readable Results

¶ Easy to build - no toolkits required

5.2. Big Web Service:

5.2.1. Overview:

Big web services, also called as SOAP Web Service are based on SOAP standard and often contain a
WSDL to describe the interface that the web service offers. The details of the contract may include
messages, operations, bindings, and the location of the web service.

Big web services includes architecture to address complex non-functional requirements like
transactions, security, addressing, trust, coordination, and also handles asynchronous processing and
invocation.

5.2.2. How does SOAP Web Service Work? :

[ŜǘΩǎ ǎŀȅ ǿŜ ƘŀǾŜ ŀ ŎƭƛŜƴǘ ŀƴŘ ǎŜǊǾŜǊ όŀǎ ǎƘƻǿƴ ƛƴ ǇƛŎǘǳǊŜύΣ ŀƴŘ ǎŜǊǾŜǊ Ƙŀǎ ŀ ǿŜō ǎŜǊǾƛŎŜ ŘŜǇƭƻȅŜŘ ƻƴ ƛǘ
ǿƛǘƘ ŦǳƴŎǘƛƻƴǎ ƭƛƪŜ ŦǳƴмόύΣ ŦǳƴнόύΣ ŦǳƴоόύΣ ŦǳƴпόύΧǎƻ ƻƴ.

Now, to access this web service and functionalities, client needs a machine address of the web server
and some more basic information about the web services like what are the functions this web service is
offering, what are the standards and protocol that this web service is using etc.,

All these information is included in XML file called WSDL and this file is being available to client.
With the help of this WSDL file client can access Web service.

Now, how can a client access this WSDL? There are 2 ways by which client can access WSDL.

1. If service provider knows the client then it can directly give the file to client and then client can
access web service using tis WSDL fie.

2. LŦ {ŜǊǾƛŎŜ ǇǊƻǾƛŘŜǊ ŘƻŜǎƴΩǘ ƪƴƻǿ ǘƘŜ ŎƭƛŜƴǘ ǘƘŜƴ {ŜǊǾƛŎŜ ǇǊƻǾƛŘŜǊ Ŏŀƴ ǊŜƎƛǎǘŜǊ ǘƘŜ ǿŜō ǎŜǊǾƛŎŜ ƻƴ
internet using UDDI. Client will search for a web service in UDDI and UDDI will return all the
service providers offering that service. Client will choose a particular provider and UDDI gives a
WSDL of that particular provider to client. And using this WSDL client can access Web Service.

5.2.3. Advantages of SOAP Web Service:

¶ Easy to consume - sometimes

¶ Rigid - type checking, adheres to a contract

6. Java Web Services

Java web services provide concepts and examples of two main java web services api: JAX-WS and JAX-
RS. The java web service application can be accessed by other programming languages such as .Net and
PHP.

1) JAX-WS: Known as Java API for XML Web Services is useful for SOAP web services. There are two
ways to write JAX-WS application code: by RPC style and Document style.

2) JAX-RS: Known as Java API for RESTful Web Services is useful for RESTful web services. There are two
ways to write JAX-WS application code: Jersey and RESTeasy.

6.1. JAX-WS Example

Creating JAX-WS example is easy because JAX-WS API is inbuilt in JDK, so you don't need to load any
extra jar file for it. Let's see a simple example of JAX-WS example in RPC style.

There are created 4 files for hello world JAX-WS example:

1. HelloWorld.java
2. HelloWorldImpl.java
3. HelloWorldPublisher.java
4. HelloWorldClient.java

The first 3 files are created for server side and 1 application for client side.

File: HelloWorld.java

https://en.wikipedia.org/wiki/Java_API_for_RESTful_Web_Services

(Code below)

package com.jaxwsexample;

import javax.jws.WebMethod;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;

import javax.jws.soap.SOAPBinding.Style;

//Service Endpoint Interface

@WebService

@SOAPBinding(style = Style.RPC)

public interface HelloWorld{

 @WebMethod String getHelloWorldAsString(String name);

}

File: HelloWorldImpl.java

(Code Below)

package com.jaxwsexample;

import javax.jws.WebService;

//Service Implementation

@WebService(endpointInterface = "com.jaxwsexample.HelloWorld")

public class HelloWorldImpl implements HelloWorld{

 @Override

 public String getHelloWorldAsString(String name) {

 return "Hello World JAX-WS " + name;

 }

}

File: HelloWorldPublisher.java

(Code Below)

package com.jaxwsexample;

import javax.xml.ws.Endpoint;

//Endpoint publisher

public class HelloWorldPublisher{

 public static void main(String[] args) {

 Endpoint.publish("http://localhost:7779/ws/hello", new HelloWorldImpl());

 }

}

How to view generated WSDL

After running the publisher code, you can see the generated WSDL file by visiting the URL:

http://localhost:7779/ws/hello?wsdl

File: HelloWorldClient.java

(Code Below)

package com.jaxwsexample;

import java.net.URL;

import javax.xml.namespace.QName;

import javax.xml.ws.Service;

public class HelloWorldClient{

 public static void main(String[] args) throws Exception {

 URL url = new URL("http://localhost:7779/ws/hello?wsdl");

 //1st argument service URI, refer to wsdl document above

 //2nd argument is service name, refer to wsdl document above

 QName qname = new QName("http://javatpoint.com/", "HelloWorldImplService");

 Service service = Service.create(url, qname);

 HelloWorld hello = service.getPort(HelloWorld.class);

 System.out.println(hello.getHelloWorldAsString("javatpoint rpc"));

 }

 }

Output:

Hello World JAX-WS javatpoint rpc

6.2. JAX-RS Example

In this chapter we will learn to create JAX-RS by jersey implementation.

There are created 4 files for hello world JAX-RS example:

1. Hello.java
2. web.xml
3. index.html
4. HelloWorldClient.java

The first 3 files are created for server side and 1 application for client side.

File: Hello.java

(Code Below)

package com.jaxrsexample.rest;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("/hello")

public class Hello {

 // This method is called if HTML and XML is not requested

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public String sayPlainTextHello() {

 return "Hello Jersey Plain";

 }

 // This method is called if XML is requested

 @GET

 @Produces(MediaType.TEXT_XML)

 public String sayXMLHello() {

 return "<?xml version=\"1.0\ "?>" + "<hello> Hello Jersey" + "</hello>";

 }

 // This method is called if HTML is requested

 @GET

 @Produces(MediaType.TEXT_HTML)

 public String sayHtmlHello() {

 return "<html> " + "<title>" + "Hello Jersey" + "</title>"

 + "<body><h1>" + "Hello Jersey HTML" + "</h1></body>" + "</html> ";

 }

}

File: web.xml

(Code Below)

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

id="WebApp_ID" version="3.0">

 <servlet>

 <servlet-name>Jersey REST Service</servlet-name>

 <servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>

 <init-param>

 <param-name>jersey.config.server.provider.packages</param-name>

 <param-value>com.jaxrsexample.rest</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>Jersey REST Service</servlet-name>

 <url-pattern>/rest/*</url -pattern>

 </servlet-mapping>

</web-app>

File: index.html

Click Here

Now run this application on server. Here we are using Tomcat server on port 4444. The project name is

restfuljersey.

After running the project, you will see the following output:

File: ClientTest.java

(Code Below)

package com.jaxrsexample.restclient;

import java.net.URI;

import javax.ws.rs.client.Client;

import javax.ws.rs.client.ClientBuilder;

import javax.ws.rs.client.WebTarget;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.UriBuilder;

import org.glassfish.jersey.client.ClientConfig;

public class ClientTest {

 public static void main(String[] args) {

 ClientConfig config = new ClientConfig();

 Client client = ClientBuilder.newClient(config);

 WebTarget target = client.target(getBaseURI());

 //Now printing the server code of different media type

System.out.println(target.path("rest").path("hello").request().accept(MediaType.TEXT_PLAIN).get(String

.class));

System.out.println(target.path("rest").path("hello").request().accept(MediaType.TEXT_XML).get(String.c

lass));

System.out.println(target.path("rest").path("hello").request().accept(MediaType.TEXT_HTML).get(String

.class));

 }

 private static URI getBaseURI() {

 //here server is running on 4444 port number and project name is restfuljersey

 return UriBuilder.fromUri("http://localhost:4444/restfuljersey").build();

 }

}

Output:

Hello Jersey Plain

<?xml version="1.0"?><hello> Hello Jersey</hello>

<html> <title>Hello Jersey</title><body><h1>Hello Jersey HTML</h1></body></html>

7. Web Service Design Approach

There are two approaches in implementing a web service and they are top-down and bottom-up.

7.1. Top-down approach

Top-down Web services development involves creating a Web service from a WSDL file.
The technique is also referred to as contract first since the WSDL (or contract between sender and
receiver) is the starting point.

You can do this using the WSDL Editor or IDE like Eclipse. Below are the simple steps to create java bean
files from WSDL.

1. Create a dynamic or java project as mentioned here
Here, we have created a sample web dynamic project with the name SampleWS as given below.

2. Generate the service using top down approach
Right click on the SamplWS project name -> New -> Other

http://malliktalksjava.in/2013/02/03/create-a-dynamic-web-project-using-sts/

3. Select the Web Service from the wizard as below and click on Finish button.

4. {ŜƭŜŎǘ ǘƘŜ ²Ŝō ǎŜǊǾƛŎŜǎ ǘȅǇŜ ŀǎ Ψ¢ƻǇ Řƻǿƴ WŀǾŀ ōŜŀƴ ²Ŝō ǎŜǊǾƛŎŜΩ ŀƴŘ ǇǊƻǾƛŘŜ ǘƘŜ ²{5[¦w[ƛƴ

the Service definition drop down and click on Finish button.

Sample WSDL URL is: http://localhost:8080/SampleWebService/wsdl/Calculator.wsdl

5. Your Web service is ready with the Java bean methods as below and the Final

folder structure looks like below:

http://localhost:8080/SampleWebService/wsdl/Calculator.wsdl

7.2. Bottom-up approach

Bottom-up Web services development involves creating a Web service and WSDL from the code, ƭŜǘΩǎ
say Java.
The technique is also referred to as code first since we use code to create web service.

Below are the simple steps to create Web Service from Java code in Eclipse.

I. Create Dynamic Web Project

¦ǎŜ ǘƘŜ ƴŜǿ ǇǊƻƧŜŎǘ ŦǊƻƳ ƳŜƴǳ ŀƴŘ ƻǇŜƴ ǇǊƻƧŜŎǘ ǿƛȊŀǊŘΦ {ŜƭŜŎǘ Ψ5ȅƴŀƳƛŎ ²Ŝō tǊƻƧŜŎǘΩ. Then give a
project name (i.e. MathUtiliy) and select a target runtime (i.e. Apache Tomcat v7.0) and leave all other
default values and click next to finish.

II. Create Web Service Provider Java Class

/ǊŜŀǘŜ ŀ ƴŜǿ ǇŀŎƪŀƎŜ ǳƴŘŜǊ ΨWŀǾŀ wŜǎƻǳǊŎŜǎ ς ǎǊŎΩ ƴŀƳŜŘ ŎƻƳΦmath.utility Then, create a new java class
called MathUtility.java ǳƴŘŜǊ ǘƘŀǘ ǇŀŎƪŀƎŜΦ ¢Ƙƛǎ ƛǎ ǘƘŜ ǿŜō ǎŜǊǾƛŎŜΩǎ ǎŜǊǾƛŎŜ ǇǊƻǾƛŘŜǊ ŎƭŀǎǎΦ

III. Create a Web Service

wƛƎƘǘ ŎƭƛŎƪ ƻƴ ΨWŀǾŀ wŜǎƻǳǊŎŜǎΩ -Ҕ bŜǿ ŀƴŘ ǎŜƭŜŎǘ Ψ²Ŝō {ŜǊǾƛŎŜΩ ǳƴŘŜǊ Ψ²Ŝō {ŜǊǾƛŎŜǎΩ ŦƻƭŘŜǊ ŦǊƻƳ ǘƘŜ
wizard. Click Next button.

Browse for the Service Implementation to use for the Web Service. In our case, this will be
άaŀǘƘ¦ǘƛƭƛǘȅέΦ
Move ǘƘŜ {ƭƛŘŜǊ .ŀǊ ǘƻ ά¢Ŝǎǘ ²Ŝō {ŜǊǾƛŎŜέ ŀƴŘ ǎŜƭŜŎǘ ϦCƛƴƛǎƘϦΦ

At this time, the Eclipse IDE uses Apache to generate a WSDL file and associated schema to create a web
service based on the MathUtility logic. After creating the necessary files, the tool adds these files to the
"wsdl" directory within "WebContent".

iv. Test Web Service
After the web service creation is completed, the web service is started, along with a utility allowing us to
verify that the logic is exposed as a web service and works correctly.

Once the web server has started, a Web Services Explorer window will appear with service details.

